

Square - Root Method:
If
$$\chi^2 = K$$
, then $\chi = \pm \sqrt{K}$
Solve $\chi^2 = 9$ by S.R.M.
 $\chi = \pm \sqrt{9}$ [$\chi = \pm 3$]
Solution Set
 $\chi = \pm \sqrt{9}$ [$\chi = \pm 3$]
Solve ($2\chi - 1$) $= 3 = 4$ ($2\chi - 1$) $= 7$ ($\chi = 1 \pm \sqrt{7}$)
 $\chi = 1 \pm \sqrt{7}$
 $\chi = 1 \pm \sqrt{7}$
 $\chi = 1 \pm \sqrt{7}$
 $\chi = 1 \pm \sqrt{7}$

Solue
$$(3x+2)^{2}+5=30$$

 $(3x+2)^{2}=25$
 $use S.R.M.$
 $3x+2=\pm\sqrt{25}$
 $\chi_{=}-\frac{2+5}{3}$
 $\chi_{=}-\frac{2+5}{3}$
 $\chi_{=}-\frac{2+5}{3}$
 $\chi_{=}-\frac{2-5}{3}$
 $=\frac{3}{3}=1$
 $=\frac{3}{3}=1$
 $=\frac{3}{3}=1$
 $=\frac{3}{3}=1$
 $=\frac{1}{3}$
 $=\frac{1}$

Solving
$$\chi^{2} + b\chi + c = 0$$
 by completing the
Square method: L.c.=1
 $\chi^{2} + b\chi + \left(\frac{b}{2}\right)^{2} = -C + \left(\frac{b}{2}\right)^{2}$ Take half of b,
Square it, and
 $\chi^{2} + b\chi + \frac{b^{2}}{4} = \frac{b^{2}}{4} - \frac{C \cdot 4}{4}$ add to both Sides
 $\left(\chi + \frac{b}{2}\right)^{2} = \frac{b^{2} - 4C}{4}$ $\int \chi_{2} = -\frac{b}{2} \pm \frac{\sqrt{b^{2} + 4C}}{2}$
Use S.R.M.
 $\chi + \frac{b}{2} = \pm \sqrt{\frac{b^{2} - 4C}{4}}$ $\chi_{2} = -\frac{b \pm \sqrt{b^{2} - 4C}}{2}$

Solve
$$x^{2} + 8x + 12 = 0$$
 by completing the
Square method.
 $\chi^{2} + 8\chi + 16 = -12 + 16$ $\frac{1}{2} \cdot 8 = 4$
 $y^{2} = 16$
 $(\chi + 4)^{2} = 4$
Now use S.R.M.
 $\chi + 4 = \pm 54$
 $\chi = -4 \pm 2 = 2$
 $\chi = -4 \pm 2 = 2$

Solve
$$\chi^2 - 10\chi + 25 = 0$$
 by Completing the Square
method.
 $\chi^2 - 10\chi + 25 = -25 + 25$
 $\frac{1}{2} \cdot (-10) = -5$
 $(\chi - 5)^2 = 0$ $(-5)^2 = 25$
by S.R.M.
 $\chi - 5 = \pm \sqrt{0}$
 $\chi = 5 \pm 0$
Repeated $\chi = 5$
Solution

Solue
$$\chi^{2} - 3\chi - 38=0$$
 by Completing the Square
method. $\chi^{2} - 3\chi + \frac{9}{4} = 28 + \frac{9}{4}$
 $\frac{1}{2} \cdot (-3) = -\frac{3}{2}$
 $(\chi - \frac{3}{2})^{2} = \frac{38 \cdot 4}{4} + \frac{9}{4}$
 $(\chi - \frac{3}{2})^{2} = \frac{38 \cdot 4}{4} + \frac{9}{4}$
 $(\chi - \frac{3}{2})^{2} = \frac{112 + 9}{4}$
 $(\chi - \frac{3}{2})^{2} = \frac{112 + 9}{4}$
 $\chi - \frac{3}{2} = \pm \sqrt{\frac{121}{4}}$
 $\chi - \frac{3}{2} = \pm \sqrt{\frac{121}{4}}$
 $\chi = \frac{3 \pm 11}{2} = \frac{14}{2} = \frac{19}{2}$
 $\chi = \frac{3 \pm 11}{2} = \frac{14}{2} = \frac{19}{2}$
 $\chi = \frac{3 - 11}{2} = \frac{-8}{2} = \frac{14}{2}$

Let's derive the quadratic formula:
Quadratic Equation
$$0! \chi^2 + b\chi + (=0), 0! = 0$$

Quadratic Formula $\chi = \frac{-b \pm \sqrt{b^2 + 4\alpha}}{2\alpha}$
 $0! \chi^2 + b\chi + c = 0$
 $0! \chi^2 + b\chi + c = 0$
 $0! \chi^2 + b\chi = -C$
Divide by α
 $\frac{2\alpha}{\alpha} \chi^2 + \frac{b}{\alpha} \chi = -\frac{C}{\alpha}$
 $\chi^2 + \frac{b}{\alpha} \chi + \frac{b^2}{4\alpha^2} = -\frac{C}{\alpha} + \frac{b^2}{4\alpha^2}$
 $\left(\chi + \frac{b}{2\alpha}\right)^2 = \frac{b^2}{4\alpha^2} - \frac{C \cdot 4\alpha}{\alpha \cdot 4\alpha}$
 $\left(\chi + \frac{b}{2\alpha}\right)^2 = \frac{b^2}{4\alpha^2} - \frac{C \cdot 4\alpha}{\alpha^2}$
 $\left(\chi + \frac{b}{2\alpha}\right)^2 = \frac{b^2}{4\alpha^2} - \frac{4\alpha}{\alpha^2}$
 $\left(\chi + \frac{b}{2\alpha}\right)^2 = \frac{b^2}{4\alpha^2} - \frac{4\alpha}{\alpha^2}$
 $\left(\chi + \frac{b}{2\alpha}\right)^2 = \frac{b^2 - 4\alpha}{4\alpha^2}$
by S.R.M.
 $\chi + \frac{b}{2\alpha} = \pm \sqrt{\frac{b^2 - 4\alpha}{4\alpha^2}}$
 $\chi = -b \pm \sqrt{b^2 - 4\alpha}$
 $\chi = -b \pm \sqrt{b^2 - 4\alpha}$

Solve
$$(2x + 5)(3x - 2) = 7$$
 by using the quadratic
for mula.
Hint:
Foil, Simplify, write in $0x^2 + 5x + C = 0$ form.
 $6x^2 - 4x + 15x - 10 - 7 = 0$
 $6x^2 + 11x - 17 = 0$
 $0x^2 + 5x + C = 0$
 $x = \frac{-5 \pm \sqrt{5^2 - 4aC}}{2a} = \frac{-11 \pm \sqrt{529}}{2(6)} = \frac{-11 \pm 33}{12}$
 $x = \frac{-11 \pm 23}{12} = \frac{12}{12} = 11$
 $x = \frac{-11 - 23}{12} = \frac{-34}{12} = \frac{-11}{6}$

Solve
$$(\sqrt{5} \times -2)(\sqrt{5} \times +2)=0$$

Use Zero - Product Rule
IS A·B=0, then A=0 or B=0
(Maybe both)
 $\sqrt{5} \times -2=0$ OR $\sqrt{5} \times +2=0$
 $\sqrt{5} \times =2$
 $\chi = \frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}$
 $\chi = \frac{-2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}$
 $\chi = \frac{-2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}$
 $\chi = -\frac{2\sqrt{5}}{5}$
 $\chi = -\frac{2\sqrt{5}}{5}$

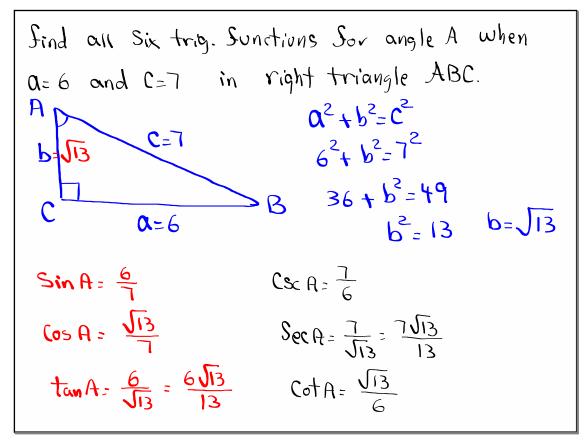
Find all three Sides:
Right Triangle

$$x+3$$

 $3x+1$
 $Right Triangle
 $3x+1$
 $Right Triangle
 $x+3$
 $a^2+b^2=c^2$
 $(x+3)^2 + (2x+2)^2 = (3x+1)^2$
 $x^2+6x+9 + (4x^2 + 8x + 4) = (9x^2 + 6x + 1)^2$
 $5x^2 + 19x + 13 = 9x^2 + 6x + 1$
 $9x^2 + 6x + 1 - 5x^2 - 19x - 13 = 0$
 $4x^2 - 8x - 12 = 0$
 $9(x - 3)(x + 1) = 0$
 $by Z.P.R.$
 $x^2 - 2x - 3 = 0$
 $x-3 = 0$ OR $x = 0$
 $5x^2 + 6x = 100$
 $(00 = 100)$
 $y = 100$$$

$$\frac{c}{A} = \frac{b}{b} = \frac{c}{c} = \frac{a}{c} = \frac{b}{c} = \frac{c}{b} = \frac{c}{b} = \frac{b}{c} = \frac{c}{b} = \frac{b}{c} = \frac{c}{b} = \frac{b}{c} = \frac{c}{b} = \frac{b}{c} = \frac{c}{b} = \frac{c}{b} = \frac{c}{b} = \frac{c}{b} = \frac{c}{b} = \frac{c}{c} = \frac{c}{b} = \frac{c}{c} = \frac{c}{b} = \frac{c}{c} = \frac{c}$$

Special angles: 30°, 45°, 60°
Sin
$$30^{\circ} = \frac{1}{2}$$
 | Sin $45^{\circ} = \frac{\sqrt{2}}{2}$ | Sin $60^{\circ} = \frac{\sqrt{3}}{2}$
Cos $30^{\circ} = \frac{\sqrt{3}}{2}$ | Cos $45^{\circ} = \frac{\sqrt{2}}{2}$ | Cos $60^{\circ} = \frac{1}{2}$
tan $30^{\circ} = \frac{\sqrt{3}}{3}$ | tan $45^{\circ} = 1$ | tan $60^{\circ} = \sqrt{3}$
Use Your Calc to Sind the Sollowing, round to
3-decimal Places.
1) Sin $25^{\circ} \approx .423$ 2) (cos $65^{\circ} \approx .423$ 3) tan $40^{\circ} \approx .839$



The angle of elevation to the top of a
building is 75° from a point 1.5 ft
away from the building. How tall is the
building? Drawing Required.
$$\tan 75^\circ = \frac{h}{1.5}$$

h Cross-Multiply
 $h = 1.5 \cdot \tan 75^\circ$
 $h = 5.59507 - \cdots$
 $1 - \operatorname{decimal}$ $h \approx 5.6$ ft

The height of an isosceles triangle is 52 cm
and each of the two equal angles are 71°.
Sind the equal Sides. Drawing required.

$$x \cdot \cos 19^\circ = 52$$

 $x = \frac{52}{\cos 19^\circ}$ whole $\cos 19^\circ = \frac{52}{x}$
 $x \approx 54.99627...$ Round to whole
 $x \approx 55$ cm each

Verify
$$(S_{in} \alpha + 1)(S_{in} \alpha - 1) = -\frac{1}{S_{ec}^2 \alpha}$$

 $(A + B)(A - B)$
 $= A^2 - B^2$
 $(S_{in} \alpha + 1)(S_{in} \alpha - 1) = S_{in}^2 \alpha - 1$
but $S_{in}^2 A + (o_s^2 A = 1) = 1$
 $S_{in}^2 A = 1 - (o_s^2 A)$
 $= -(o_s^2 \alpha)$
 $= -(\frac{1}{S_{ec}^2 \alpha})^2$

Verify
$$\frac{\cos \alpha}{\sec \alpha} + \frac{\sin \alpha}{\csc \alpha} = 1$$

 $\frac{\cos \alpha}{\sec \alpha} + \frac{\sin \alpha}{\csc \alpha} = \cos \alpha \cdot \frac{1}{\sec \alpha} + \sin \alpha \cdot \frac{1}{\csc \alpha}$
 $\frac{3}{5} = 3 \cdot \frac{1}{5}$
 $\frac{\cos \alpha}{\cos \alpha} = (\cos \alpha \div \frac{1}{\cos \alpha})$
 $= \cos \alpha \cdot \cos \alpha + \sin \alpha \cdot \sin \alpha$
 $= \cos^{2} \alpha + \sin^{2} \alpha$
 $= 1 \sqrt{2}$
 $= \cos^{2} \alpha$

Verify
$$\frac{\cos^{4} \chi - \sin^{4} \chi}{\sin^{2} \chi} = \cot^{2} \chi - 1$$

$$A^{4} - B^{4} = (A^{2})^{2} - (B^{2})^{2} = (A^{2} + B^{2})(A^{2} - B^{2})$$

$$\frac{(\cos^{4} \chi - \sin^{4} \chi)}{\sin^{2} \chi} = \frac{(\cos^{2} \chi + \sin^{2} \chi)(\cos^{2} \chi - \sin^{2} \chi)}{\sin^{2} \chi}$$

$$= \frac{(\cos^{2} \chi - \sin^{2} \chi)}{\sin^{2} \chi} = \frac{(\cos^{2} \chi - \sin^{2} \chi)}{\sin^{2} \chi}$$

$$\frac{A - B}{B} = \frac{A}{B} - \frac{B}{B}$$

$$= (\frac{\cos \chi}{\sin \chi})^{2} - 1$$

$$= (\cos^{2} \chi - 1)^{2}$$

Verify
$$\frac{1}{1+(05\chi)} + \frac{1}{1-(05\chi)} = 2(5c^{2}\chi)$$

 $\frac{1}{1+(05\chi)} + \frac{1}{1-(05\chi)} = 2(5c^{2}\chi)$
 $\frac{1}{1+(05\chi)} + \frac{1}{1-(05\chi)} + \frac{1}{1-(05\chi)} = \frac{1}{1+(05\chi)}$
 $\frac{1-(05\chi) + 1+(05\chi)}{(1+(05\chi))(1-(05\chi))} = \frac{2}{(1+(05\chi)(1-(05\chi))}$
 $(A+B)(A-B) = \frac{2}{1-(05\chi)} = \frac{2}{1-(05\chi)} = \frac{2}{5in^{2}\chi}$
 $Sin^{2}\chi + (05^{2}\chi = 1) = 2 \cdot \frac{1}{5in^{2}\chi} = 2 \cdot (5c^{2}\chi)$
 $Sin^{2}\chi = 1 - (05\chi)$

Verify
$$\frac{\cos \chi}{1+\sin \chi} + \frac{1+\sin \chi}{\cos \chi} = 2 \operatorname{Sec} \chi$$

$$\frac{\cos \chi}{1+\sin \chi} + \frac{1+\sin \chi}{\cos \chi} = 2 \operatorname{Sec} \chi$$

$$\frac{\cos \chi}{1+\sin \chi} + \frac{1+\sin \chi}{\cos \chi} = \frac{1+\sin \chi}{1+\sin \chi}$$

$$\frac{\cos^2 \chi}{(1+\sin \chi) \cdot \cos \chi} + \frac{1+\sin \chi}{(1+\sin \chi) \cdot \cos \chi} = \frac{\cos^2 \chi}{(1+\sin \chi) \cdot (\cos \chi)}$$

$$= \frac{1+1+2\sin \chi}{(1+\sin \chi) \cdot \cos \chi} = \frac{2+2\sin \chi}{(1+\sin \chi) \cdot (\cos \chi)} = \frac{2(1+\sin \chi)}{(1+\sin \chi) \cdot (\cos \chi)}$$

$$= \frac{2}{\cos \chi} = 2 \cdot \frac{1}{\cos \chi} = 2 \operatorname{Sec} \chi$$

Gross-Multiply to verify that

$$\frac{1 - Sec \chi}{1 + Sec \chi} = \frac{Cos \chi - 1}{(os \chi + 1)}$$

$$(1 - Sec \chi)(Cos \chi + 1) = (1 + Sec \chi)(Cos \chi - 1)$$

$$Cos \chi + 1 - Sec \chi Cos \chi - Sec \chi = Cos \chi - 1 + Sec \chi Cos \chi - Sec \chi$$

$$Cos \chi - Sec \chi = Cos \chi - Sec \chi$$

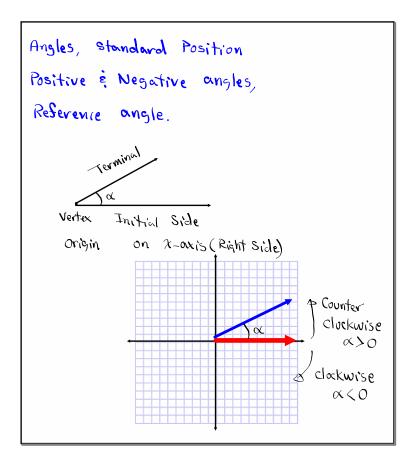
$$Cos \chi Sec \chi = \frac{1}{Cos \chi}$$

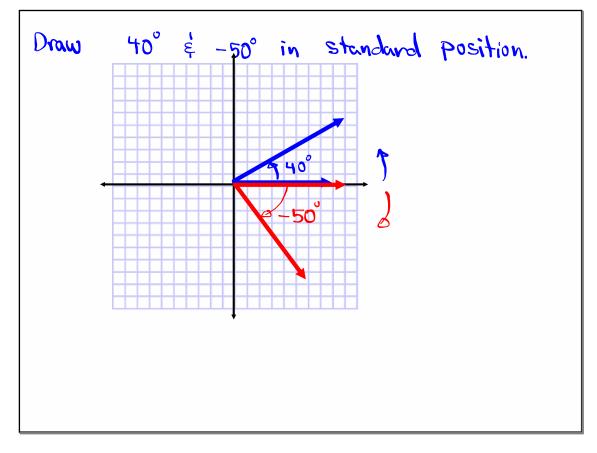
$$Cos \chi Sec \chi = Cos \chi - \frac{1}{Cos \chi}$$

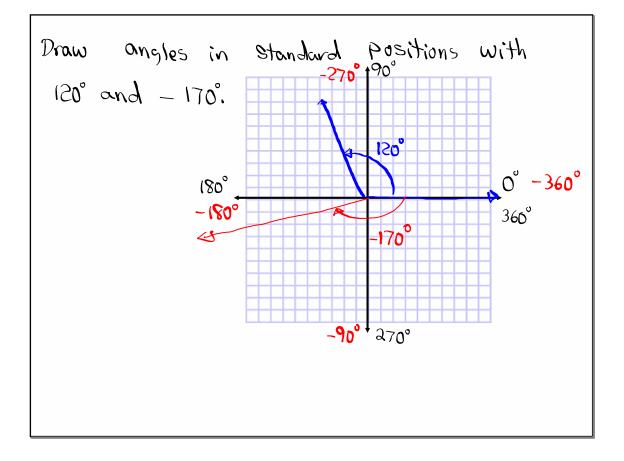
$$Cos \chi Sec \chi = Cos \chi - \frac{1}{Cos \chi}$$

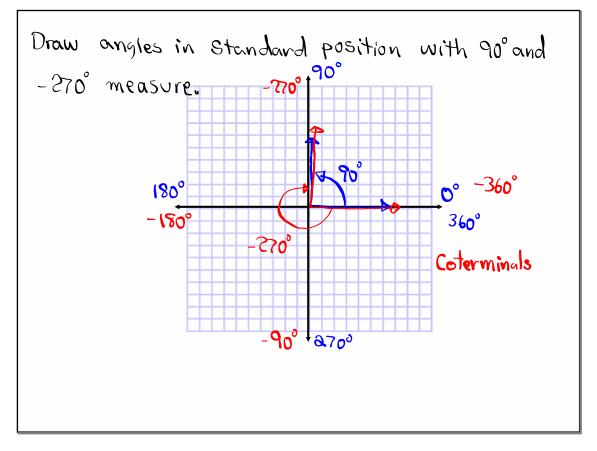
$$Cos \chi Sec \chi = 1$$

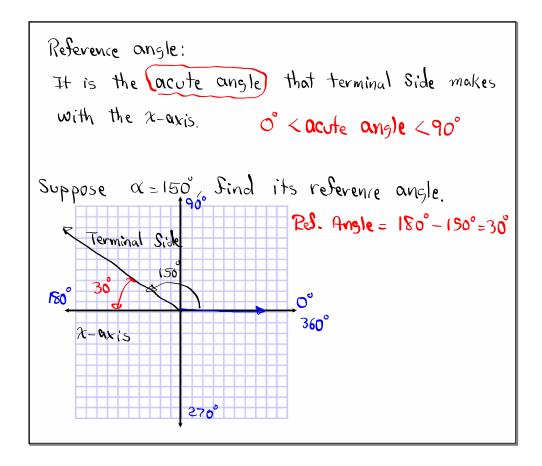
$$Taw \chi \cdot (ot \chi = 1)$$

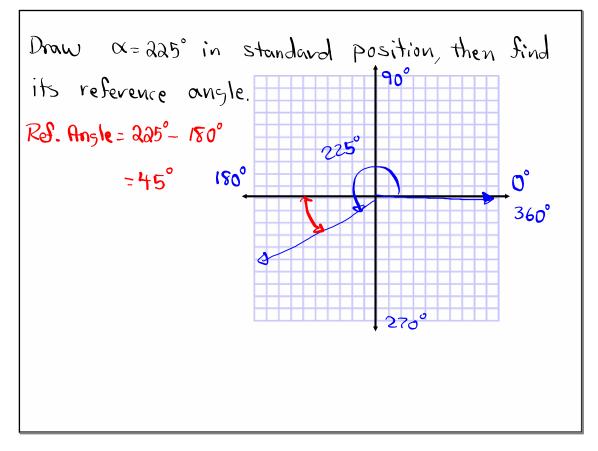


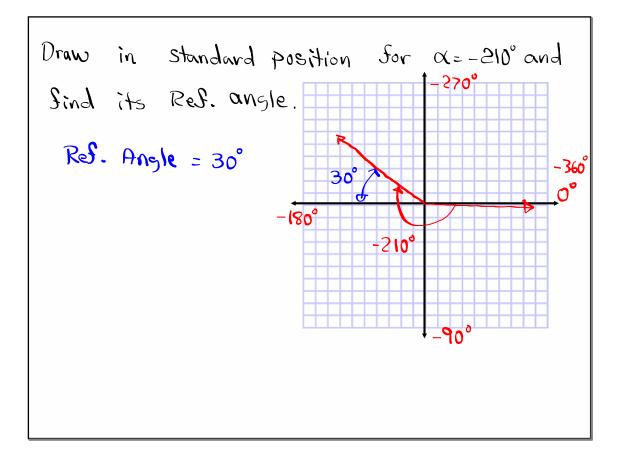


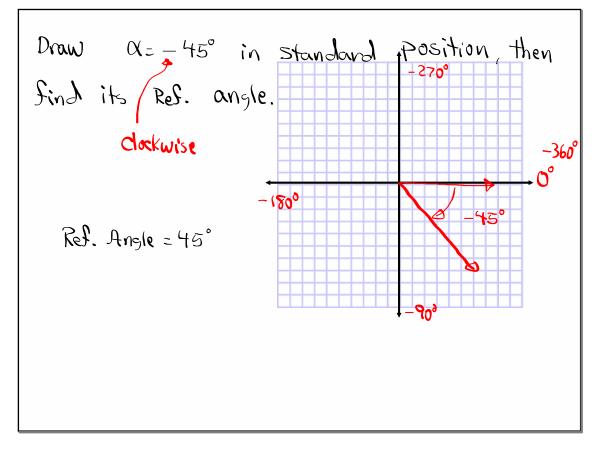






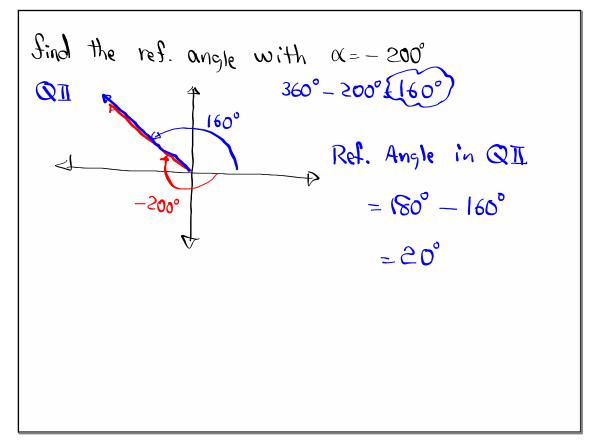


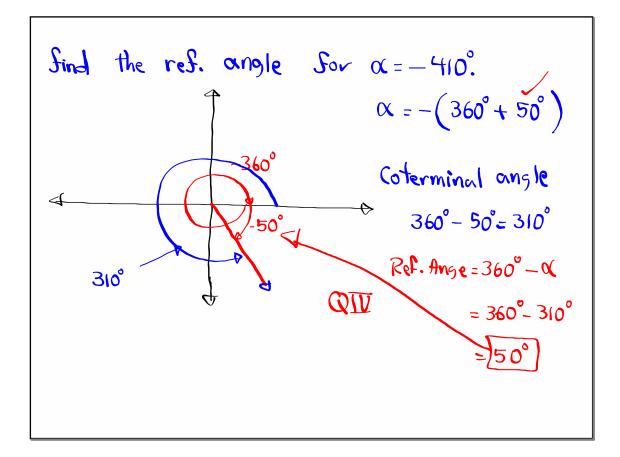


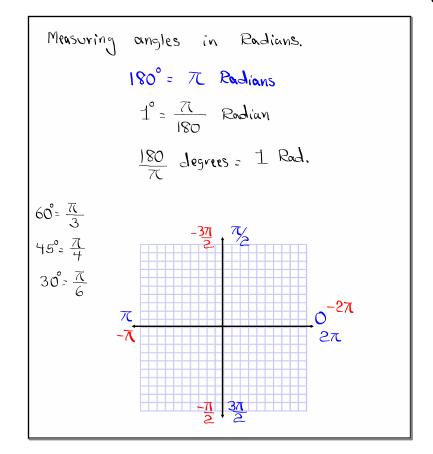


How to Sind the ref. angle when terminal
Side is in
1) Q I
Ref. Angle =
$$\alpha$$

2) Q II
Ref. Angle = $(80^{\circ} - \alpha)$
3) Q II Ref. Angle = $\alpha - 180^{\circ}$
4) Q IV
Ref. angle = $360^{\circ} - \alpha$
When $\alpha < 0$, Sind a positive angle
with Same terminal Side.







Convert 75° in radians.

$$75^{\circ} = 30^{\circ} + 45^{\circ}$$

 $= \frac{7}{6} + \frac{7}{4} = \frac{7.2}{6.2} + \frac{7.3}{4.3} = \frac{27}{12} + \frac{37}{12} = \frac{57}{12}$
 $L^{\text{CD=12}}$
 $180^{\circ} = 7$
 $1^{\circ} = \frac{7}{180}$ Multiply by 75
 $75^{\circ} = \frac{757}{180} = \frac{157}{36} = \frac{57}{12}$

Convert 225° to radians.

$$225°$$
 to radians.
 $225° + 45°$
 $= 7C + \frac{\pi}{4} = \frac{4\pi}{4} + \frac{\pi}{4} = \frac{5\pi}{4}$
Convert 300° to radians.
 $300° = 360° - 60°$
 $= 2\pi - \frac{\pi}{3} = \frac{2\pi \cdot 3}{3} - \frac{\pi}{3} = \frac{6\pi}{3} - \frac{\pi}{3} = \frac{5\pi}{3}$
 $300° = 270° + 30°$
 $= \frac{3\pi \cdot 3}{2 \cdot 3} + \frac{\pi}{6} = \frac{9\pi}{6} + \frac{\pi}{6} = \frac{40\pi}{53} = \frac{5\pi}{3}$

Class QZ 3
Use the right triangle below to complete
the following chart.
Sin A =
$$\frac{3}{5}$$
 (Sc A = $\frac{5}{3}$
 $\frac{\cos A}{2} = \frac{4}{5}$ Sec A = $\frac{5}{4}$
 $\tan A = \frac{3}{4}$ (c) $A = \frac{4}{3}$ $C^{2} = 9^{2} + 12^{2}$
 $C^{2} = 225$ C=15